Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 196: 105613, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945230

RESUMO

In this study, seven novel anthraquinones (1-7) and four described anthraquinones (8-11) were purified from Nicotiana tabacum-derived Aspergillus oryzae YNCA1220. It is worth noting that only analogs of 4 and 5 have been reported as natural products to date, while the nuclei of compounds 1-3, 6 and 7 were isolated for the first time in nature. Among them, compounds 1-3 bear an unusual anthra[2,3-b]furan-9,10-dione nucleus, 4 and 5 possess a rare 3-methyl-1H-pyrrol-2-yl substituent, and 6 and 7 are new framework anthraquinones bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. Interestingly, the in vivo assays indicated that 1, 4 and 5 had inactivation effects against tobacco mosaic virus (TMV) with inhibition rates of 41.6%, 55.4% and 38.6%, respectively, at a concentration of 50 µg/mL, which were better than that of the positive control agent, ningnanmycin (33.8%). Compounds 1, 4 and 5 also had protective effects with inhibition rates of 48.7%, 60.2% and 43.5% at the same concentration, while 4 had a better curative effect than ningnanmycin at a concentration of 100 µg/mL. In addition, mechanistic studies also revealed that a potent direct effect on TMV, the induction of SAR in tobacco plants, and the effective regulation of defense enzymes, defense genes, and defense hormones may be the reasons for the significant effects of 4 against TMV. At the same time, downregulation of the expression of total NtHsp70 protein by inhibiting the related Hsp70 genes may also be involved in tobacco resistance to TMV. To evaluate whether compounds have broader antiviral activities, the antirotavirus activities of new isolates were also evaluated and found to be highly effective with a therapeutic index (TI) value ranging from 11.6 to 17.7. This study suggests that the above anthraquinone compounds, particularly 4, have broad spectrum antiviral activities. The successful isolation and structure identification of the above anthraquinones provide new materials for the screening of anti-TMV agents and contribute to the improved utilization of N. tabacum-derived fungi.


Assuntos
Aspergillus oryzae , Vírus do Mosaico do Tabaco , Antraquinonas/farmacologia , Bioensaio , Antivirais/farmacologia
2.
AMB Express ; 13(1): 132, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991629

RESUMO

Leaf stacking fermentation involves enzymatic actions of many microorganisms and is an efficient and environmentally benign process for degrading macromolecular organic compounds. We investigated the dynamics of metabolite profiles, bacterial and fungal communities and their interactions during fermentation using cigar leaves from three geographic regions. The results showed that the contents of total sugar, reducing sugar, starch, cellulose, lignin, pectin, polyphenol and protein in cigar tobacco leaves was significantly decreased during fermentation. Notably, the furfural, neophytadiene, pyridine, benzyl alcohol, geranylacetone, 3-hydroxy-2-butanone, N-hexanal, 3-Methyl-1-butanol and 2,3-pentanedione were important features volatile aroma compounds during fermentation. The α-diversity of fungi and bacteria initially increased and then decreased during fermentation. An analysis of variance showed that microbial diversity was influenced by fermentation stages and growing locations, in which the all stages had greater impacts on α- and ß-diversity than all regions. Microbiome profiling had identified several core bacteria including Sphingomonas, Bacillus, Staphylococcus, Pseudomonas, Ralstonia, Massilia and Fibrobacter. Fungal biomarkers included Aspergillus, Penicillium, Fusarium, Cladosporium and Trichomonascus. Interestingly, the molecular ecological networks showed that the core taxa had significant correlations with metabolic enzymes and physicochemical properties; bacteria and fungi jointly participated in the carbohydrate and nitrogen compound degrading and volatile aroma compound chemosynthesis processes during fermentation. These studies provide insights into the coupling of material conversion and microbial community succession during leaf fermentation.

3.
Biochem Biophys Rep ; 35: 101532, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37637940

RESUMO

Changes in volatile metabolites during cigar tobacco leaves fermentation as well as the metabolic pathways of metabolites with significant differences were investigated to determine the influence of cigar tobacco leaves fermentation on its flavor. The volatile substances in cigar tobacco leaves at different stages were detected by headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), and the main differences in volatile substances in cigar tobacco leaves at different fermentation stages of Yunxue1 in Yuxi production area were analyzed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The results show that in the process of cigar tobacco leaves fermentation (YXF0, YXF1, YXF2, YXF3, YXF4, YXF5), a total of 613 volatile metabolites were detected, and a significant difference was found in 263 kinds of metabolites. Among them, the main upregulated differential metabolites were 1,3,6,10-Cyclotetradecatetraene, 3,7,11-trimethyl-14-(1-methylethyl)-, [S-(E,Z,E,E)]-, Benzoic acid, Benzaldehyde, etc. While the main downregulated differential metabolites included beta.-Myrcene, trans-Farnesol, etc. The metabolites with significant differences are mainly concentrated in the biosynthesis of monoterpenes, diterpenes, sesquiterpenes and triterpenes, the degradation metabolism of amino acids, such as valine, leucine and isoleucine, and the biosynthesis of phenylpropyl. There were 8 different metabolites in 5 groups, including 4- (1-methylethyl) -1-cyclohexene-1-formaldehyde、2, 4-dihydroxyacetophenone、2-methylbutyl 3-methylbutyrate and methylpyrazine, all of which showed upregulation trend during fermentation. In the fermentation process, volatile metabolites participate in various synthesis and degradation pathways. The biosynthesis pathway of terpenes and amino acid synthesis and degradation pathway are connected to produce various terpenes, aldehydes and other substances, such as 1,3,6,10-Cyclotetradecatetraene, 3,7,11-trimethyl-14-(1-methylethyl)-, [S-(E,Z,E,E)]-、benzaldehyde and 4-hydroxybenzaldehyde, which are conducive to the overall flavor and quality of cigar tobacco leaves.

4.
Appl Microbiol Biotechnol ; 107(18): 5789-5801, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458766

RESUMO

Metabolic enzyme activity and microbial composition of the air-curing and fermentation processes determine the quality of cigar tobacco leaves (CTLs). In this study, we reveal the evolution of the dominant microorganisms and microbial community structure at different stages of the air-curing and fermentation processes of CTLs. The results showed that the changes in metabolic enzymes occurred mainly during the air-curing phase, with polyphenol oxidase (PPO) being the most active at the browning phase. Pseudomonas, Bacteroides, Vibrio, Monographella, Bipolaris, and Aspergillus were the key microorganisms in the air-curing and fermentation processes. Principal coordinate analysis revealed significant separation of microbial communities between the air-curing and fermentation phases. Redundancy analysis showed that bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota were correlated with enzyme activity and temperature and humidity. Bacteria mainly act in sugar metabolism, lipid metabolism, and amino acid metabolism, while fungi mainly degrade lignin, cellulose, and pectin through saprophytic action. Spearman correlation network analysis showed that Firmicutes, Proteobacteria, and Actinobacteria were the key bacterial taxa, while Dothideomycetes, Sordariomycetes, and Eurotiomycetes were the key fungal taxa. This research provides the basis for improving the quality of cigars by improving the air-curing and fermentation processes. KEY POINTS: • Changes in POD and PPO activity control the color change of CTLs at the air-curing stage. • Monographella, Aspergillus, Pseudomonas, and Vibrio play an important role in air-curing and fermentation. • Environmental temperature and humidity mainly affect the fermentation process, whereas bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota are associated with enzyme activity and temperature and humidity.


Assuntos
Ascomicetos , Produtos do Tabaco , /microbiologia , Fermentação , Bactérias , Proteobactérias , Firmicutes , Acidobacteria , Bacteroidetes , Folhas de Planta/microbiologia
5.
Biol Trace Elem Res ; 201(8): 4191-4201, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36441496

RESUMO

In this paper, five C and N metabolites and eighteen mineral elements were used to identify the cigar's geographical origin on a country scale (Dominica, Indonesia, and China) and on a prefecture scale (Yuxi, Puer, and Lincang in China). The results show that the best origin traceability method is the combination of C and N metabolites and mineral elements method. Its. Its accuracy of cross-validation can achieve 95% on a country scale and 94% on a prefecture scale. Determination accuracy is ranked as identification by combination > mineral elements > C and N metabolites. For geo-origin determination of cigars, mineral element identification is better than that metabolite identification. The algorithm and factors for origin determination are selected. The results can be used to guide cigar agricultural practices and monitor and regulate the cigar in production and circulation.


Assuntos
Quimiometria , Produtos do Tabaco , Minerais/análise , Geografia , China
6.
RSC Adv ; 12(38): 25060-25067, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36199893

RESUMO

The rapid and onsite detection of glyphosate in tobacco products is still a great challenge. In this study, a novel smartphone-assisted sensing platform for the detection of glyphosate has been successfully proposed through the peroxidase-like activity of Fe3O4-based nanozyme. Heptanoic acid/Prussian blue (PB) decorated Fe3O4 nanoparticles (Fe3O4@C7/PB) could catalyze and oxidize 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS, colorless) into a steel blue colored product in the presence of hydrogen peroxide. Glyphosate could specifically inhibit the peroxidase-like activity of Fe3O4@C7/PB by occupying the active site, thereby the glyphosate detection could be accomplished within 10 min by monitoring the color change of ABTS. This study has developed a smartphone-based portable detection platform for online analysis of glyphosate with a detection limit of 0.1 µg mL-1. The absorbance response curve of glyphosate showed good linearity in the concentration range of 0.125-15 µg mL-1 at 415, 647, and 730 nm. Moreover, by employing a co-precipitation technology and inhibiting the peroxidase-like activity, the glyphosate analysis would be less affected by the tobacco sample matrix. The nanosensor possesses excellent selectivity and anti-interference ability, which has application value in actual samples for onsite screening.

7.
Front Microbiol ; 12: 658116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335492

RESUMO

"Cherry-red" tobacco is the superior variant of tobacco, appearing with the apperance of red dapples on cured leaves due to the demethylation of nicotine to nornicotine during maturation and curing. Fungi are known to have the capacity to convert nicotine to nornicotine. However, an endophytic fungal community of "cherry-red" tobacco has never been reported to our best knowledge. Here, we sampled mature leaves from both "cherry-red" and ordinary tobacco at lower, center, and upper plant sections, and we analyzed the ITS diversity using high-throughput sequencing. Results revealed a significantly different fungal community of foliar endophyte in "cherry-red" and ordinary tobacco. In comparison to the ordinary control, higher diversity and a co-occurrence network complex were found in "cherry-red" samples, especially in the center and upper leaves, where the red dapples mainly emerged. More taxa were enriched in the "cherry-red" than ordinary tobacco leaves at all plant sections. In particular, Aspergillus, some strains of which are reported capable of converting nicotine to nornicotine, was specifically enriched in upper "cherry-red" tobacco leaves, which showed most red dapples after curing. A less robust network structure was detected in the "cherry-red" tobacco compared to ordinary tobacco. The nearest taxon index (NTI) and ß NTI indicated that the local community structuration of tobacco endophytic fungi mainly driven by deterministic process, while the community turnover among plant sections was stochastic. In conclusion, our study provides the earliest information of endophytic fungal community in "cherry-red" tobacco leaf, and the community diversity, composition, and network features are synchronously varied with the appearance of red dapples, which is suggestive of their relationship to the formation of "cherry-red" tobacco.

8.
Front Plant Sci ; 11: 580597, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193524

RESUMO

Salicylic acid (SA) can induce plants to actively enhance abiotic stress resistance. Spraying SA to prevent cold stress in flue-cured tobacco fields can provide theoretical support and practical guidance for the actual protection from cold stress in fields at high altitude in Yunnan. The experiment was performed in Jianchuan County Yunnan Province, China. Honghuadajinyuan, a flue-cured tobacco variety with cold resistance, was used as the research object. SA was tested at two concentrations (0.05 [SA-1] and 0.1 [SA-1] mol L-1) relative to an untreated control (Control) to compare the quality of fresh tobacco leaves, curing characteristics, enzyme activity of antioxidants, and quality of the first-cured tobacco leaves. The tissue structure thickness, SPAD, and plastid pigment content of fresh tobacco leaves were least in the control; there was no significant difference between SA-1 and SA-2. The change of moisture content during curing was SA-1 > SA-2 > Control, and the water loss rate was Control > SA-2 > SA-1, and both varied greatly at 38-48°C. In each curing stage, the carbon and nitrogen metabolites and polyphenols changed most rapidly at 38°C, and the sugar metabolites changed as follows: Control > SA-1 > SA-2. The activities of the antioxidant enzymes superoxide dismutase, peroxidase, and catalase in fresh tobacco leaves were SA-1 > SA-2 > Control. Malondialdehyde content and the inactivation rate of antioxidant enzymes during curing was Control > SA-2 > SA-1. The economic character and sensory smoking quality of flue-cured tobacco leaves were SA-1 > SA-2 > Control. In high-altitude tobacco planting areas prone to cold stress in the field, early warning weather forecast and field spraying 0.05 mol L-1 SA are beneficial to protect and improve the quality of fresh tobacco leaves, curing characteristics, antioxidant system enzyme activities, and the quality of flue-cured tobacco leaves.

9.
Sci Rep ; 9(1): 17850, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780730

RESUMO

The enzyme browning reaction results in grey speckles on tobacco leaves, which impairs the value and industrial usability of tobacco leaves. To demonstrate the influences of different browning degrees (BDs) of tobacco leaves on the usability of different cultivars and positions and identified structure of brown (grey) matter, we selected three flue-cured tobacco cultivars (K326, Yunyan87, and Honghuadajinyuan (Hongda)) and set four different BDs (<25%, 25% to 50%, 50% to 75%, and >75%). Indices related to: economic traits, chemical components, physical properties, and sensory quality of tobacco leaves with different cultivars were evaluated. Moreover, by utilising thin-layer chromatography and high-performance liquid chromatography, we analysed and identified the structure of the grey matter in terms of chemical composition. The experimental results show that the main component of grey speckles on tobacco leaves is 3-acetyl-6,7-dimethoxycoumarin (YC-ZJF). With the increase of BD, the amount of total sugar and reducing sugar, output value, the proportion of superior tobacco, shatter resistance index, and sensory evaluation score of the three cultivars significantly decrease, while the starch content increases significantly. The changes in protein, total nitrogen, and nicotine are insignificant with changing BD. In addition, other indices show different trends for different cultivars of flue-cured tobacco. After separation and identification of the components of grey speckled leaves, it is proved that the substance derived from grey speckles on tobacco leaves is YC-ZJF. The research is important to the study of browning mechanisms in tobacco leaves and provides corresponding targets for strategies to reduce browning thereof.


Assuntos
/metabolismo , Pigmentos Biológicos/metabolismo , Folhas de Planta/química , Produtos do Tabaco/normas , Cromatografia/métodos , Cumarínicos/análise , Pigmentos Biológicos/análise , Folhas de Planta/metabolismo , Amido/análise , /enzimologia
10.
Molecules ; 22(11)2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-29143758

RESUMO

Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.


Assuntos
Agaricus/enzimologia , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Agaricus/química , Domínio Catalítico , Cobre/química , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Oxigênio/química , Conformação Proteica , Teoria Quântica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA